Amazon Fraud Detector
Hands-On
Demo

In this demo, we will:
- Set up IAM roles and permissions for Amazon Fraud Detector
- Create and upload training data to S3
- Create variables, entity types, and labels
- Create event type for new account registration
- Build and train the machine learning model
- Review model performance and deploy the model
- Create outcomes and business rules for risk-based decisions
- Build and publish the fraud detector
- Test the detector with CloudShell using different risk scenarios
- Monitor predictions and analyze results
- Clean up all resources
Agenda

Create IAM Role
{
"Version": "2012-10-17",
"Statement": [
{
"Effect": "Allow",
"Principal": {
"Service": "frauddetector.amazonaws.com"
},
"Action": "sts:AssumeRole"
}
]
}
Add permissions
AmazonFraudDetectorFullAccess
Add permissions
AmazonS3ReadOnlyAccess
Name, review, and create
FraudDetectorServiceRole
Step 1: Select trusted entities

Step 2: Add permissions

Create S3 Bucket
fraud-detector-demo-123456
Successfully created bucket "fraud-detector-demo-123456"


Download raw file
ip_address,email_address,billing_state,user_agent,billing_postal,phone_number,EVENT_TIMESTAMP,billing_address,EVENT_LABEL
112.136.132.151,fake_cgonzales@example.net,NC,"Mozilla/5.0 (iPad; CPU iPad OS 10_3_3 like Mac OS X) AppleWebKit/532.2 (KHTML, like Gecko) CriOS/34.0.827.0 Mobile/13K063 Safari/532.2",34491,(555)333 - 9246,2022-10-14T00:28:30Z,12351 Amanda Knolls Fake St.,legit
192.169.234.143,fake_dustin64@example.net,CO,"Mozilla/5.0 (Windows; U; Windows NT 6.1) AppleWebKit/532.44.3 (KHTML, like Gecko) Version/4.0.3 Safari/532.44.3",34555,(555)779 - 5604,2022-11-29T22:19:40Z,691 Deborah Estate Fake St.,legit
185.112.224.79,fake_samuel59@example.net,CO,"Mozilla/5.0 (Macintosh; U; Intel Mac OS X 10_7_0 rv:5.0; mr-IN) AppleWebKit/532.25.5 (KHTML, like Gecko) Version/4.0 Safari/532.25.5",33611,(555)948 - 9198,2023-02-18T09:16:19Z,28583 Joseph Tunnel Fake St.,legit
68.73.183.186,fake_tinalopez@example.net,TN,"Mozilla/5.0 (Linux; Android 7.1.1) AppleWebKit/535.1 (KHTML, like Gecko) Chrome/59.0.807.0 Safari/535.1",33520,(555)477 - 7885,2022-12-19T09:13:35Z,019 Linda Via Fake St.,legitSample File

Upload file

Upload succeeded

Amazon Fraud Detector

Create Variables

ip_address

email_address

user_agent

billing_city

billing_state

billing_zip

phone_number

Create entity type

customerCreate entity type

Entity types

Create labels

fraudCreate label

fraud

Create label
legit
legit

Create event type

new_account_registrationCreate event type

Event variables

Labels
Add Labels

Labels

Create event type

Build a model

Model type

Choose data file in S3

Copy the IAM Role ARN

Define model details
new_account_model
Event type
Role ARN & S3 Data Location




Model tags

Model inputs

Label classification



Review and create

Create and train model

Model training is in progress

Ready to deploy

Deploy the model

Model performance

ROC Curve

Model variable importance

Deploy model version

Deploy model version

Active

Create detector

new_account_detector
Add model

Create a 1st outcome
deny_registration
high_risk_deny$new_account_model_insightscore > 950
Outcomes

Add another rule

Create a 2nd outcome
review_registration
Create rule
medium_risk_review$new_account_model_insightscore > 850
Outcomes

Add another rule

approve_registrationCreate a 3rd outcome

Create rule
low_risk_approve$new_account_model_insightscore <= 850
Outcomes

3 Rules

Configure rule execution

Rules (3)

Rules (3)

Review and create

Create detector

Publish the Detector

Publish version

Launch AWS CloudShell
aws frauddetector get-event-prediction \
--detector-id "new_account_detector" \
--event-type-name "new_account_registration" \
--event-id "test-event-high-risk-deny" \
--event-timestamp "$(date -u +%Y-%m-%dT%H:%M:%SZ)" \
--entities '[{"entityType":"customer", "entityId":"customer-fraud-indicators"}]' \
--event-variables '{
"email_address": "fraud123@10minutemail.com",
"ip_address": "185.220.100.240",
"billing_city": "Lagos",
"billing_state": "NG",
"user_agent": "curl/7.68.0",
"phone_number": "0000000000"
}'High Risk Event
aws frauddetector get-event-prediction \
--detector-id "new_account_detector" \
--event-type-name "new_account_registration" \
--event-id "test-event-low-risk-approve" \
--event-timestamp "$(date -u +%Y-%m-%dT%H:%M:%SZ)" \
--entities '[{"entityType":"customer", "entityId":"customer-legitimate"}]' \
--event-variables '{
"email_address": "john.smith@gmail.com",
"ip_address": "173.252.66.1",
"billing_city": "Seattle",
"billing_state": "WA",
"user_agent": "Mozilla/5.0 (Macintosh; Intel Mac OS X 10_15_7) AppleWebKit/537.36",
"phone_number": "2065551234"
}'Low Risk Event
Medium Risk Event
aws frauddetector get-event-prediction \
--detector-id "new_account_detector" \
--event-type-name "new_account_registration" \
--event-id "test-event-review-8" \
--event-timestamp "$(date -u +%Y-%m-%dT%H:%M:%SZ)" \
--entities '[{"entityType":"customer", "entityId":"customer-fraud-indicators"}]' \
--event-variables '{
"email_address": "john.smith@gmail.com",
"ip_address": "173.252.66.1",
"billing_city": "Lagos",
"billing_state": "NG",
"user_agent": "Mozilla/5.0 (Macintosh; Intel Mac OS X 10_15_7) AppleWebKit/537.36",
"phone_number": "2065551234"
}'
Search past predictions
Clean Up

Empty S3 Bucket

permanently deleteEmpty S3 Bucket

Delete S3 Bucket

Delete S3 Bucket
fraud-detector-demo-123456
Delete FraudDetectorServiceRole

Delete Detector

Delete Detector

Delete Model

Delete Model

Delete Model Version

Undeploy Model Version

Undeploy Model Version

Delete Detector Version

Deactivate Detector Version

Deactivate detector version

Delete Detector Version

Delete Detector Version
new_account_detector (Version 1)
Delete Detector

Delete new_account_detector
Delete new_account_detector

Delete rule version

high_risk_deny (Version 1)Delete high_risk_deny (Version 1)

Delete rule version

Delete detector

Delete new_account_detector

Delete model

Undeploy model version

Undeploy model version
Undeploy
Undeploying...

Delete Model Version

Delete event types
🙏
Thanks
for
Watching
Amazon Fraud Detector - Hands-On Demo
By Deepak Dubey
Amazon Fraud Detector - Hands-On Demo
Amazon Fraud Detector - Hands-On Demo
- 129