\left\{\begin{array}{lll} 3 x+y-3 z+2 t&=&7 \\ x-2 y+z-t&=&-9 \\ 2 x-3 y-2 z+t&=&-4 \\ -x+5 z-3 t&=&-11 \end{array}\right.
\left\{\begin{array}{cccc} x-2 y+z-t&=&-9 & (L_1\longleftrightarrow L_2)\\ 3 x+y-3 z+2 t&=&7& \\ 2 x-3 y-2 z+t&=&-4& \\ -x+5 z-3 t&=&-11& \end{array}\right.
\left\{\begin{array}{ccccccc} x&-2 y&+z&-t&=&-9 & \\ &7y&-6z&+5t&=&34& (L_2\longleftarrow L_2-3L_1)\\ 2 x&-3 y&-2 z&+t&=&-4& \\ -x&&+5 z&-3 t&=&-11& \end{array}\right.
\left\{\begin{array}{ccccccc} x&-2 y&+z&-t&=&-9 & \\ &7y&-6z&+5t&=&18& \\ & y&-4 z&+3t&=&14& (L_3\longleftarrow L_3-2L_1)\\ -x&&+5 z&-3 t&=&-11& \end{array}\right.
\left\{\begin{array}{ccccccc} x&-2 y&+z&-t&=&-9 & \\ &7y&-6z&+5t&=&34& \\ & y&-4 z&+3t&=&14& \\ &-2y&+6z&-4 t&=&-20& (L_4\longleftarrow L_4+L_1) \end{array}\right.

(S)

  •  Choix de la 1ère ligne : 

(S)\(\iff\)

  •  Nettoyage de la colonne des "\(x\)": 

\(\iff\)

\(\iff\)

\(\iff\)

\left\{\begin{array}{ccccccc} x&-2 y&+z&-t&=&-9 & \\ & y&-4 z&+3t&=&14& (L_2\longleftrightarrow L_3)\\ &7y&-6z&+5t&=&34& \\ &-2y&+6z&-4 t&=&-20& \end{array}\right.
\left\{\begin{array}{ccccccc} x&-2 y&+z&-t&=&-9 & \\ & y&-4 z&+3t&=&14& \\ &&22z&-16t&=&-64& (L_3\longleftarrow L_3-7L_2)\\ &-2y&+6z&-4 t&=&-20& \end{array}\right.
\left\{\begin{array}{ccccccc} x&-2 y&+z&-t&=&-9 & \\ & y&-4 z&+3t&=&14& \\ &&22z&-16t&=&-64& \\ &&-2z&+2t&=&8& (L_4\longleftarrow L_4+2L_2) \end{array}\right.
  •  Choix de la 2ème ligne : 
  •  Nettoyage de la colonne des "\(y\)": 

\(\iff\)

\(\iff\)

\(\iff\)

\(\iff\)

\left\{\begin{array}{ccccccc} x&-2 y&+z&-t&=&-9 & \\ & y&-4 z&+3t&=&14& \\ &&-2z&+2t&=&8& (L_3\longleftrightarrow L_4)\\ &&22z&-16t&=&-64& \\ \end{array}\right.
\left\{\begin{array}{ccccccc} x&-2 y&+z&-t&=&-9 & \\ & y&-4 z&+3t&=&14& \\ &&-2z&+2t&=&8& \\ &&&6t&=&24& (L_4\longleftarrow L_4+11L_3)\\ \end{array}\right.
  •  Choix de la 3ème ligne : 
  •  Nettoyage de la colonne des "\(z\)": 

Le système est échelonné !!!!

  • On déduit que:
\left\{\begin{array}{ccc} x&=& -1 \\ y&=&2 \\ z&=&0 \\ t&=&4 \\ \end{array}\right.
\mathcal{S}=\lbrace (-1;2;0;4)\rbrace

\(\iff\)

\(\iff\)

\(\iff\)

deck

By intermaths.info