Presentations
Templates
Features
Teams
Pricing
Log in
Sign up
Log in
Sign up
Menu
Soit \(n \in \mathbb{N^*}\)
F=\dfrac{X^{n-1}}{X^n-2^n}
On pose :
P=X^n-2^n
P=X^n-2^n =2^n \left( \left( \frac{X}{2} \right)^n-1 \right) =2^n\prod _{k=0}^{n-1} \left( \frac{X}{2}-e^{\frac{2ik\pi}{n}} \right) =\prod _{k=0}^{n-1} 2\left( \frac{X}{2}-e^{\frac{2ik\pi}{n}} \right)\\
\text{ on a : }P'=nX^{n-1} \text{ ainsi } F=\dfrac{1}{n}\dfrac{P'}{P}
P=\prod _{k=0}^{n-1} \left( X-2e^{\frac{2ik\pi}{n}} \right)
Factorisation de P
P=\prod _{k=0}^{n-1} \left( X-\alpha_k \right)^{m_k}
\alpha_k=2e^{\frac{2ik\pi}{n}}
m_k=1
et
avec
\text{ on sait que (cours): } \dfrac{P'}{P}=\sum_{k=0}^{n-1} \dfrac{m_k}{X-\alpha_k}
\text{Conclusion: } F=\dfrac{1}{n}\sum_{k=0}^{n-1} \dfrac{1}{X-2e^{\frac{2ik\pi}{n}}}
deck
By intermaths.info
deck
28
intermaths.info
intermaths.info
More from
intermaths.info